

Optimization of cellulose recovery from banana plant pseudostem using pre-treatments

Rosa E. A. Nascimento ¹, Teresa Brás ^{2,3}, G. Crespo ¹, Luísa A. Neves ¹

1. LAQV/REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal.

2. Alentejo Biotechnology Center for Agriculture and Agro-food (CEBAL)/ Polytechnic Institute of Beja (IPBeja), 7801-908 Beja, Portugal.

3. MED – Mediterranean Institute for Agriculture, Environment and Development, CEBAL, 7801-908 Beja, Portugal.

The banana production generates great number of residues, being the main residue the pseudostem (PS) – 3 tons of PS/ ton harvested bananas. The PS can be a rich source of chemical compounds, being mainly composed of cellulose (55–65 %), hemicellulose (15–25 %) and lignin (10–15 %), which content depends on the cultivation conditions and plant species.¹

Cellulose is the most abundant polymer, being present in the plant cell wall. It is a versatile polymer since its structure and properties vary according to the source and extraction procedure used, allowing it to be applied in many applications as packaging, coatings and biomedical devices.²

In this work, the banana plant pseudostem (PS) was studied to extract cellulose. For that, the PS particles were initially milled until size \leq 180 µm, as proven in previous studies to be the most efficient size to extract cellulose.³ Then, the particles were pre-treated with 3 different chemical methods presenting as main reagents: (1) hydrogen peroxide and sodium hydroxide; (2) acetic acid and hydrogen peroxide; (3) sodium hydroxide, hydrogen peroxide and cloridric acid.^{4,5,6} The final solid obtained after each pre-treatment was analyzed according to the Sluiter *et al.* method, to determine the cellulose, hemicellulose and lignin content.⁷ The obtained results are presented in the table below.

Pre-treatment	Cellulose (wt%)	Lignin (wt%)	Hemicellulose (wt%)
1	65.77	1.50	7.31
2	65.47	0.50	3.15
3	77.30	1.00	1.53

It can be observed that pre-treatment 3 resulted in the highest cellulose content (77.30 wt%) and lowest hemicellulose and lignin contents (1.53 wt% and 1 wt%, respectively). Thus, this pre-treatment proved to be promising to extract cellulose than can be applied in many applications, being a possible alternative for plastics.

References

- (1) Badanayak, P.; Jose, S.; Bose, G. Banana Pseudostem Fiber: A Critical Review on Fiber Extraction, Characterization, and Surface Modification. J. Nat. Fibers 2023, 20 (1). https://doi.org/10.1080/15440478.2023.2168821.
- (2) Cherian, R. M.; Tharayil, A.; Varghese, R. T.; Antony, T.; Kargarzadeh, H.; Chirayil, C. J.; Thomas, S. A Review on the Emerging Applications of Nano-Cellulose as Advanced Coatings. *Carbohydr. Polym.* 2022, *282* (January), 119123. https://doi.org/10.1016/j.carbpol.2022.119123.

(3) Nascimento, R. E. A.; Carvalheira, M.; Crespo, G.; Neves, A. Extraction and Characterization of Cellulose Obtained from Banana Plant Pseudostem. *Clean Technol.* 2023, *5* (3), 1028–1043. https://doi.org/10.3390/cleantechnol5030052.

(4) Prado, K. S.; Spinacé, M. A. S. Isolation and Characterization of Cellulose Nanocrystals from Pineapple Crown Waste and Their Potential Uses. Int. J. Biol. Macromol. 2019, 122, 410–416. https://doi.org/10.1016/j.ijbiomac.2018.10.187.

(5) Park, C. W.; Han, S. Y.; Choi, S. K.; Lee, S. H. Preparation and Properties of Holocellulose Nanofibrils with Different Hemicellulose Content. *BioResources* 2017, *12* (3), 6298–6308. https://doi.org/10.15376/biores.12.3.6298-6308.

(6) Pereira, N. R. L.; Lopes, B.; Fagundes, I. V.; de Moraes, F. M.; Morisso, F. D. P.; Parma, G. O. C.; Zepon, K. M.; Magnago, R. F. Bio-Packaging Based on Cellulose Acetate from Banana Pseudostem and Containing Butia Catarinensis Extracts. *Int. J. Biol. Macromol.* 2022, *194* (December 2021), 32–41. https://doi.org/10.1016/j.ijbiomac.2021.11.179.

(7) Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; 2008.